125 research outputs found

    Sub-Hz line width diode lasers by stabilization to vibrationally and thermally compensated ULE Fabry-Perot cavities

    Full text link
    We achieved a 0.5 Hz optical beat note line width with ~ 0.1 Hz/s frequency drift at 972 nm between two external cavity diode lasers independently stabilized to two vertically mounted Fabry-Perot (FP) reference cavities. Vertical FP reference cavities are suspended in mid-plane such that the influence of vertical vibrations to the mirror separation is significantly suppressed. This makes the setup virtually immune for vertical vibrations that are more difficult to isolate than the horizontal vibrations. To compensate for thermal drifts the FP spacers are made from Ultra-Low-Expansion (ULE) glass which possesses a zero linear expansion coefficient. A new design using Peltier elements in vacuum allows operation at an optimal temperature where the quadratic temperature expansion of the ULE could be eliminated as well. The measured linear drift of such ULE FP cavity of 63 mHz/s was due to material aging and the residual frequency fluctuations were less than 40 Hz during 16 hours of measurement. Some part of the temperature-caused drift is attributed to the thermal expansion of the mirror coatings. High-frequency thermal fluctuations that cause vibrations of the mirror surfaces limit the stability of a well designed reference cavity. By comparing two similar laser systems we obtain an Allan instability of 2*10-15 between 0.1 and 10 s averaging time, which is close to the theoretical thermal noise limit.Comment: submitted to Applied Physics

    Frequency Metrology on single trapped ions in the weak binding limit: The 3s1/2-3p3/2 transition in 24-Mg+

    Full text link
    We demonstrate a method for precision spectroscopy on trapped ions in the limit of unresolved motional sidebands. By sympathetic cooling of a chain of crystallized ions we suppress adverse temperature variations induced by the spectroscopy laser that usually lead to a distorted line profle and obtain a Voigt profile with negligible distortions. We applied the method to measure the absolute frequency of the astrophysically relevant D2 transition in single 24-Mg+ ions and find 1072082934.33(16)MHz, a nearly 400fold improvement over previous results. Further, we find the excited state lifetime to be 3.84(10) ns.Comment: 4 pages, 5 figure

    Injection Locking of a Trapped-Ion Phonon Laser

    Get PDF
    We report on injection locking of optically excited mechanical oscillations of a single, trapped ion. The injection locking dynamics are studied by analyzing the oscillator spectrum with a spatially selective Fourier transform technique and the oscillator phase with stroboscopic imaging. In both cases we find excellent agreement with theory inside and outside the locking range. We attain injection locking with forces as low as 5(1)×10^(-24)  N so this system appears promising for the detection of ultraweak oscillating forces

    Interference of an array of atom lasers

    Full text link
    We report on the observation of interference of a series of atom lasers. A comb-like array of coherent atomic beams is generated by outcoupling atoms from distinct Bose-Einstein condensates confined in the independent sites of a mesoscopic optical lattice. The observed interference signal arises from the spatial beating of the overlapped atom laser beams, which is sampled over a vertical region corresponding to 2 ms of free fall time. The average relative de Broglie frequency of the atom lasers was measured.Comment: 3 figure

    Testing the Dirac equation

    Get PDF
    The dynamical equations which are basic for the description of the dynamics of quantum felds in arbitrary space--time geometries, can be derived from the requirements of a unique deterministic evolution of the quantum fields, the superposition principle, a finite propagation speed, and probability conservation. We suggest and describe observations and experiments which are able to test the unique deterministic evolution and analyze given experimental data from which restrictions of anomalous terms violating this basic principle can be concluded. One important point is, that such anomalous terms are predicted from loop gravity as well as from string theories. Most accurate data can be obtained from future astrophysical observations. Also, laboratory tests like spectroscopy give constraints on the anomalous terms.Comment: 11 pages. to appear in: C. L\"ammerzahl, C.W.F. Everitt, and F.W. Hehl (eds.): Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space, Lecture Notes in Physics 562, Springer 200

    Sub-milliKelvin spatial thermometry of a single Doppler cooled ion in a Paul trap

    Full text link
    We report on observations of thermal motion of a single, Doppler-cooled ion along the axis of a linear radio-frequency quadrupole trap. We show that for a harmonic potential the thermal occupation of energy levels leads to Gaussian distribution of the ion's axial position. The dependence of the spatial thermal spread on the trap potential is used for precise calibration of our imaging system's point spread function and sub-milliKelvin thermometry. We employ this technique to investigate the laser detuning dependence of the Doppler temperature.Comment: 5 pages, 4 figure

    Optical clocks based on ultra-narrow three-photon resonances in alkaline earth atoms

    Full text link
    A sharp resonance line that appears in three-photon transitions between the 1S0^{1}S_{0} and 3P0^{3}P_{0} states of alkaline earth and Yb atoms is proposed as an optical frequency standard. This proposal permits the use of the even isotopes, in which the clock transition is narrower than in proposed clocks using the odd isotopes and the energy interval is not affected by external magnetic fields or the polarization of trapping light. The method has the unique feature that the width and rate of the clock transition can be continuously adjusted from the MHzMHz level to sub-mHzmHz without loss of signal amplitude by varying the intensities of the three optical beams. Doppler and recoil effects can be eliminated by proper alignment of the three optical beams or by point confinement in a lattice trap. The three beams can be mixed to produce the optical frequency corresponding to the 3P0^{3}P_{0} - 1S0^{1}S_{0} clock interval.Comment: 10 pages, 4 figures, submitted to PR

    Precision spectroscopy of the 3s-3p fine structure doublet in Mg+

    Get PDF
    We apply a recently demonstrated method for precision spectroscopy on strong transitions in trapped ions to measure both fine structure components of the 3s-3p transition in 24-Mg+ and 26-Mg+. We deduce absolute frequency reference data for transition frequencies, isotope shifts and fine structure splittings that are in particular useful for comparison with quasar absorption spectra, which test possible space-time variations of the fine structure constant. The measurement accuracy improves previous literature values, when existing, by more than two orders of magnitude

    Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel

    Get PDF
    We investigate a new scheme for astronomical spectrograph calibration using the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our concept is based upon a single-mode fiber channel, that simultaneously feeds the spectrograph with comb light and sunlight. This yields nearly perfect spatial mode matching between the two sources. In combination with the absolute calibration provided by the frequency comb, this method enables extremely robust and accurate spectroscopic measurements. The performance of this scheme is compared to a sequence of alternating comb and sunlight, and to absorption lines from Earth's atmosphere. We also show how the method can be used for radial-velocity detection by measuring the well-explored 5-minute oscillations averaged over the full solar disk. Our method is currently restricted to solar spectroscopy, but with further evolving fiber-injection techniques it could become an option even for faint astronomical targets.Comment: 21 pages, 11 figures. A video abstract for this paper is available on youtube. For watching the video, please follow https://www.youtube.com/watch?v=oshdZgrt89I . The video abstract is also available for streaming and download on the related article website of New Journal of Physic

    An ion-trap phonon laser

    Get PDF
    Cooling of atoms and ions using a red-detuned laser has had a profound impact on science and technology. In this work simultaneous laser cooling and blue-detuned laser pumping of a Mg+ ion in a Paul trap is studied. Blue-detuned pumping is conventionally referred to as the heating regime, and in early work, remarkably complex behaviors (bistability and limit cycles) have been associated with this regime. These behaviors have so far not been fully explained. Here, it is shown that blue-detuned pumping, as opposed to heating, causes stimulated emission of center-of-mass phonons, leading to coherent oscillatory motion of the ion in analogy with a laser. Mechanical amplification is calculated as well as the threshold pumping condition for oscillation. A single ion in a linear radio-frequency trap is studied to verify these predictions. Blue-detuned pumping of the magnesium D2 transition at 279.6 nm provides amplification along the long axis of the ion trap so as to excite only axial oscillations. A slightly off-axis, red-detuned beam cools the center-of-mass motion to approximately 1 mK
    • …
    corecore